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ABSTRACT
Implementing secure Non-Volatile Memories (NVMs) is challeng-
ing, mainly due to the necessity to persist security metadata along
with data. Unlike conventional secure memories, NVM-equipped
systems are expected to recover data after crashes and hence se-
curity metadata must be recoverable as well. While prior work
explored recovery of encryption counters, fewer efforts have been
focused on recovering integrity-protected systems. In particular,
how to recover Merkle Tree. We observe two major challenges
for this. First, recovering parallelizable integrity trees, e.g., Intel’s
SGX trees, requires very special handling due to inter-level depen-
dency. Second, the recovery time of practical NVM sizes (terabytes
are expected) would take hours. Most data centers, cloud systems,
intermittent-power devices and even personal computers, are antic-
ipated to recover almost instantly after power restoration. In fact,
this is one of the major promises of NVMs.

In this paper, we propose Anubis, a novel hardware-only solution
that speeds up recovery time by almost 107 times (from 8 hours
to only 0.03 seconds). Moreover, we propose a novel and elegant
way to recover inter-level dependent trees, as in Intel’s SGX. Most
importantly, while ensuring recoverability of one of the most chal-
lenging integrity-protection schemes among others, Anubis incurs
performance overhead that is only 2% higher than the state-of-
the-art scheme, Osiris, which takes hours to recover systems with
general Merkle Tree and fails to recover SGX-style trees.

CCS CONCEPTS
• Security and privacy → Cryptography; Systems security;
Database and storage security; •Computer systems organization
→ Architectures; • Hardware → Emerging technologies.
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*Anubis is an Egyptian god known for embalming and watching over the dead. Our
work is mainly inspired by Anubis’s capabilities to embalm and track the lost metadata
blocks.
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1 INTRODUCTION
Emerging Non-Volatile Memories (NVMs), such as Phase-Change
Memory (PCM), are considered promising contenders for replacing
DRAM due to their scalability [1, 2], non-volatility, ultra-low idle
power and low latency[3–5]. On the other hand, emerging NVMs
bring in a set of new challenges for memory management and se-
curity; since NVMs retain data even after power loss, necessary
measures for security and persistence of security metadata must
be taken throughout the lifetime of the system and across system
reboots/crashes [6–8]. Security and persistence have to be consid-
ered during the design time of NVM-based memory systems. In
fact, the persistence of data has to be accompanied by persisting
related security metadata to ensure secure and functional recovery
[7, 8].

State-of-the-art secure memory systems employ counter-mode
encryption[7–9]. In counter-mode encryption, each memory block
(cacheline) is associated with a specific counter that is used along
with processor key to encrypt/decrypt the data block once writ-
ten/read to/from memory. While ensuring the confidentiality of
such counters is considered unnecessary, their integrity must be
protected; replaying an old counter would compromise the security
of counter-mode encryption. To protect the integrity of counters,
Merkle Tree is generally used. Merkle Tree consists of hashes over
hashes where the leaves are the counters, and finally the root of
the tree is always kept in the processor chip. Each counter update
changes such root value, and hence any tampering will be detected
due to root mismatch. Integrity trees have been also deployed in
commercial products for secure processors, e.g., Intel’s SGX. More-
over, integrity trees have been considered thus far the most secure
scheme with low on-chip storage overhead; only the root needs to
be kept inside the processor chip.

Implementing integrity trees with NVM memory systems is par-
ticularly challenging; updates to counters result in updating all
levels up to the root. Thus, to ensure consistency after a crash, such
updates need to occur atomically. Second, since NVMs have a slow,
power-consuming and limited number of writes, updating all levels
(can be tens of levels) of Merkle Tree on each counter update is
impractical. Third, in some integrity trees, such as SGX-style, which
offers parallel updates, recovering the tree by relying on recovering
leaves (counters) is infeasible. Finally, reconstructing Merkle Tree is
required to verify the first access to memory, however, for terabytes
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of memory such a recovery process can take many hours. Practi-
cal NVM capacities are expected to reach terabytes per processor
socket. For instance, Intel’s Xeon server is expected to be equipped
with 6TB NVM memory[10].

In this paper, we aim to provide recoverability and ensure ultra-
low recovery time while incurring minimal run-time overheads.
Recoverability is perhaps the most promising system feature that
NVMs provide. Thus, adding security primitives such as encryp-
tion and integrity-protection should also consider recoverability.
Moreover, emerging NVMs are promising for data centers, cloud
systems and HPC systems, mainly due to their ultra-low idle power.
In such systems, availability is a strict requirement. For instance, to
meet the well-known availability target of 99.999% (five nines rule),
the system can be down for a maximum of 5.25 minutes per year.
Our results show that recovering a practical NVM size (8TB) with
current secure processor implementations would take 7.8 hours,
which is considered unacceptable. For instance, for each minute of
the system being down in Amazon’s cloud system, it is estimated to
cost 70 thousand dollars per minute[11]. A simple example would
be an in-memory database system, where a crash occurs right af-
ter a transaction is committed. In such a case, the whole Merkle
Tree must be recovered first to be able to verify integrity before
completing any new transactions or enquiries.

The main source of the security metadata crash inconsistency
problem is the not-persisted-yet updates to Merkle Tree and en-
cryption counters. In conventional systems, most of these updates
occur in volatile caches inside the processor chip, however, without
strictly persisting them in memory. Thus, once a crash occurs, the
data might be written to memory while its updated encryption
counter (and updated Merkle Tree nodes) has not been reflected
in memory yet. Therefore, after recovery, the system will have an
inconsistency between the versions of data and its corresponding
security metadata. On the other hand, strictly persisting updates to
such security metadata would eliminate such inconsistency, how-
ever, at the cost of tens of additional memory writes for each normal
write. Given the limitedwrite-endurance and very slowNVMwrites,
such solution (strict persistence) is considered impractical. Mean-
while, since counter and Merkle Tree caches can hold hundreds of
thousands of security metadata cache blocks[8, 12], guaranteeing
enough power to ensure flushing their content is impractical. In fact,
state-of-the art processors have a limited number of entries (only
tens of write entries) that are guaranteed to be persisted by the sys-
tem. For instance, in recent Intel’s processors, a small buffer (tens of
entries) co-located with memory controller is called Write Pending
Queue (WPQ) [13, 14]. Write operations are considered persistent
once they reach the WPQ buffer. Flushing WPQ to NVM in case of
power loss mainly relies on a system feature called Asynchronous
DRAM Self-Refresh (ADR) [13, 14] which guarantees enough power
to flush the contents of WPQ. Thus, given the limited ability of
ADR, high costs of uninterruptible power supplies, the demand
for battery-free solutions, area and environmental constraints, it is
important to innovate new mechanisms to ensure persistence of
security metadata [7, 8].

The state-of-the-art solution, Osiris[7], enables recovery of en-
cryption counters (the leaves of Merkle Tree) through leveraging
data ECC bits to identify the most recent counter value used for

encryption. While Osiris relies on Merkle Tree for final verifica-
tion of the candidate counter values, it overlooks the recoverability
of Merkle Tree. However, similar to any other counter recovery
scheme, Osiris would take hours to recover the system after a
crash. Before completing the first memory access, counter recov-
ery schemes need to fix the counters and then build up the whole
Merkle Tree upon all the counters (leaves), and hence iterating
over a huge number of memory blocks. Moreover, Osiris does not
consider the case where recovering encryption counters alone is in-
sufficient to reconstruct some Merkle Trees as in commercial secure
processors. Another work, selective persistence [8], relaxes atomic
persistence of encryption counters for non-persistent data through
software modification and API. However, selective persistence can
lead to certain security vulnerabilities [7], its overhead scales with
the amount of persistent data, and fails to ensure recoverability
of parallelizable trees and also incurs significant overheads for re-
constructing Merkle Tree. In both studies, Osiris [7] and selective
persistence[8], Merkle Tree reconstruction has been overlooked
and neither its recoverability nor its recovery time with practical
capacities were considered or discussed.

To overcome such major challenges, and enable implementing
security primitives effectively with persistent memory systems,
we propose Anubis. Anubis is a novel hardware-only solution that
enables ultra-low recovery time and additionally ensures recov-
erability of parallelizable trees (as in SGX). Anubis is based on a
key observation: persistently tracking the addresses of blocks in
counter and Merkle Tree caches can be used to significantly reduce
recovery time. However, the addresses in such caches do not change
as frequent as content; addresses only change when a miss occurs,
and hence the overhead to track them in memory is minimal. By
tracking such addresses, after a crash, the system needs to only
rebuild the affected parts of the tree. Moreover, for SGX-style trees,
we shadow the metadata cache and elegantly protect the integrity
of such shadow version. Thus, at a recovery time of SGX-style tree,
we only need to cache back such shadow version. To the best of
our knowledge, our paper is the first to address the recovery time
of general trees and the recoverability of SGX-style trees. Our main
solution is inspired by Anubis (the ancient Egyptian god) for the
ability to watch over the dead (by tracking potentially lost meta-
data) and embalming (by keeping an integrity-protected shadow
copy of the cache in persistent memory).

To evaluate the performance overhead of our proposed solution,
we use Gem5 [15], a cycle-level simulator to run memory-intensive
benchmarks from SPEC2006 suite[16]. Our evaluation shows that,
on average, Anubis reduces the performance overhead from 63%
(for strict-persistence) to only 3.4%, which is nearly as low as Osiris
overhead (1.4%). Most importantly, Anubis achieves a recovery
time of 0.03s, whereas Osiris requires an average of 7.8 hours for
8TB to recover both encryption counters and Merkle Tree. Besides,
Anubis’s recovery time is only a function of the security metadata
cache size and does not increase linearly with memory size as in
other schemes. In summary, our contributions in this paper are the
following:

• We propose Anubis, a novel memory controller design that
enables low-overhead and low recovery time for integrity-
protected systems.
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• The first ever solution to enable recovery of parallelizable
Merkle Trees such as Intel’s SGX counter tree.
• Anubis achieves recovery time speedup (107 speedup) that
keeps secure memory practical when used with persistent
memory.
• To the best of our knowledge, this is the first paper to discuss
the impact of Merkle Tree cache update scheme and Merkle
Tree implementation (parallelizable vs. unparallelizable) on
recoverability.

With all the above contributions, we believe that this paper will
open up a new research direction that considers recoverability
when implementing secure persistent memories.

The rest of the paper is organized as following. First, in Section
2, we present an overview of memory encryption schemes, crash
consistency and atomicity of security metadata persistence. Section
3 presents quantitative results that demonstrate the problem. Later,
in Section 4, we discuss the design of Anubis and its different vari-
ants. Section 5 presents our evaluation methodology. Later, Section
6 presents our evaluation for the Anubis. Section 7 discusses the
related work. Finally, Section 8 concludes our paper.

2 BACKGROUND
In this section, we discuss the main aspects of secure NVM systems
and related concepts.

2.1 Threat Model
Similar to the state-of-the-art approaches [6–9, 12], our threat
model only trusts the processor chip. An attacker can possibly
scan the memory, snoop the memory bus, replay memory packets,
and can tamper with memory contents or memory bus packets.
Attacks such as access pattern leakage, memory timing, power anal-
ysis, speculative execution and electromagnetic (EM) side channel
attacks are beyond the scope of this paper.

2.2 Counter-Mode Encryption
In state-of-the-art secure processors, counter-mode memory en-
cryption is used. Counter-mode encryption enables overlapping the
encryption/decryption latency with fetching data by using Initial-
ization Vectors (IVs) to generate encryption/decryption pads that
will be merely XOR’ed with ciphertext/plaintext to complete decryp-
tion/encryption. Thus, fetching the data can occur concurrently
with generating the pad, typically called One-Time Pad (OTP), from
the IV. Additionally, by ensuring spatial and temporal uniqueness
of such OTPs, the same data is very unlikely to generate the same
ciphertext; part of the IV (counter) will change each time it is used
for encryption, and the address of the block is used as a part of the
IV to ensure spatial variation.

Since the read/write granularity in memory system is cache
blocks, typically 64B, it is common to associate each cache block
with a counter that will be used to establish the IV to be used
for its encryption/decryption. However, counter-mode encryption
strictly prohibits reusing the same IVwith the same key as it enables
known-plaintext attacks. Therefore, such counters should be large
enough to reduce the overflow rate in which the whole memory
must be re-encrypted with a new key. Unfortunately, such limita-
tion imposes large storage overheads. Therefore, state-of-the-art
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Figure 1: Counter-Mode Encryption in State-Of-The-Art Se-
cure Memories [7, 12].

schemes organize counters into major and minor counters (called
split-counter scheme) [9], where a small minor counter, typically 7
bits, is associated with each cache block (64B), and a larger major
counter, typically 64 bits, is shared across all cache blocks of the
same page (4KB). By doing so, only when a minor counter over-
flows, the major counter is incremented and all the page will be
re-encrypted with the new major counter.

Figure 1 depicts how Initialization Vectors (IVs) are established
from counter blocks. Note that page counters are packed in 64B
counter blocks that contain 64 minor counters (one for each cache
block in the page) and a major counter. However, SGX uses 56bit
counters and packs 8 counters per 64B counter block. For the rest
of the paper, we use split-counter scheme for the general memory
encryption scheme and SGX-like 56-bit counters for SGX-style
scheme.

2.3 Integrity Verification
Ensuring the integrity of counters is a major security requirement
for the counter-mode encryption scheme. Typically, a root hash
value that is calculated over all the counters is stored in the pro-
cessor chip. However, to facilitate fast verification of counters and
updating the root, a tree of hashes is typically used. By doing so,
verifying a counter or updating its hash value would only require
accessing the corresponding part of the tree instead of all other
counters in the system. Such tree-of-hashes is typically referred to
as Merkle Tree.

State-of-the-art implementations incorporate data integrity ver-
ification with counter integrity verification [9]. In particular, en-
suring the integrity of the counter through Merkle Tree while pro-
tecting data through a MAC value calculated over the data and the
corresponding counter would be sufficient from a security stand-
point. Such systems that employ Merkle Tree for counters + MAC
(over counter and data) are called Bonsai Merkle Trees [9].

In general, there are two types ofMerkle Trees, non-parallelizable
and parallelizable (similar to SGX-style) as will be discussed next.

2.3.1 Non-Parallelizable Merkle Tree. Figure 2 depicts a general
Merkle Tree scheme that builds on the hashes over hashes. In this
scheme, a number of counter blocks are hashed together using a
cryptographic hash function stored in the processor. These hashes
are hashed over and over again and a tree structure is formed with
the 64B counter blocks being the leaves and one 64B hash at the

159



ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Zubair, et al.

C C C CLeaves 
(64B counter blocks)

Merkle Tree

C C C C

Hash (64B to 8B)

C C C C C C C C

...

...

...

Secure Processor Boundary Merkle Tree Root

Hash (64B to 8B)

Hash (64B to 8B)

Intermediate Nodes

Figure 2: General Non-Parallelizable Merkle-Tree.

top of the tree as the root which is always kept inside the processor.
As mentioned earlier, the counter blocks are organized using the
split-counter scheme and we use Bonsai Merkle Tree style.

In this scheme, each level of the tree consists of hash values
calculated over a number of its direct children nodes (those on
the lower level). For instance, in each level, each node is 64B that
consists of eight 8B hash values. Each 8B hash value has been
calculated over a 64B node of the lower level, thus the tree is called
8-ary tree (each of the 8 nodes will have one parent node in the
upper level). At the time of verification for a counter block, we
need to verify the hash values of all its parents in upper levels
until the first level hit in the cache as it has been already verified
when brought to the processor chip. In the worst case, when all
corresponding nodes in upper levels are missing, we need to verify
each level that it matches the MAC calculated in its upper level up
to the root. However, such verification steps can occur in parallel
for each level. In contrast, updating counters would need updating
upper levels sequentially; it is not feasible to compute the hash
value of the next level before the current level. Thus, parallelizing
updates to Merkle Tree levels is not achievable in this scheme.

One thing that is important to note here is that the whole Merkle
Tree, including the root, can be reconstructed from the leaves
(counter blocks). Thus, while the reconstruction time can be too
long, just persisting counter blocks is sufficient to reconstruct the
tree starting from the leaves all the way up to the root.

2.3.2 Parallelizable Merkle Tree. To enable parallelism, paralleliz-
able Merkle Tree uses nonces for each tree node. A MAC is stored
in each block with counters/nonces. The MAC is calculated over
the nonces in the block and one nonce from the parent block us-
ing a secret hash function stored in the chip as shown in Figure
3. Whenever an encryption counter is incremented, the respective
nonce in the parent nodes is incremented too. This way, a parallel
update of MAC values is possible since each block can be updated
separately by incrementing their nonces and calculating the MAC
over the new nonces.

There are two design options for the update of such tree structure.
As discussed in [18, 19], once an encryption counter is updated, it
is only sufficient to update the upper nodes up to the first cache hit.
This scheme does not immediately update the root. Once that node
in the cache (one which is the most updated one in the cache and
beyond which writes did not propagate last time) gets evicted, the
parent node is incremented. Thus writes are propagated upward
lazily relying on the assumption that such updates will be eventually

Figure 3: SGX-Style Parallelizable Merkle Tree [17].

propagated once evicted from the cache. The other design option
is to always propagate the tree update up to the root regardless of
the availability of intermediate nodes in the cache. In our design
for such tree structure, we have adopted the former method similar
to Synergy [20] and Vault [18].

Although such parallelizable tree structure allows parallel au-
thentication as well as update of the tree, the recovery of the tree
structure after a crash is challenging since the nonces are lost along
with the hash stored in the same block. Unlike the general hash
tree structure, it is impossible to regenerate the tree only from
the encryption counters and hence impossible to verify counters’
integrity if intermediate nodes are lost.

2.4 Recovery of Counters
Recently, Ye et al. [7] proposed a scheme to recover encryption
counters after a crash. The authors discussed several ways including
extending the data bus to include a portion of the counter, phase,
which stores the low significant bits of the counter to relax the
need to persist the counter block on each update. Furthermore, the
authors propose a novel scheme, called Osiris, which leverages the
encrypted ECC bits co-located with data as a sanity-check to help
in retrieving the counter used for completing the encryption of
data. By combining this with a stop-loss mechanism, persisting the
counter every Nth update, only a few trials are needed to recover
each counter through checking ECC bits sanity. For more details
about the reliability and implementation of Osiris, we refer the
readers to the original paper[7].

Our paper focuses on speeding up the recovery of Merkle Tree.
Thus, restoring encryption counters is necessary but orthogonal
to this work. While we will use Osiris to recover leaves (in case of
general Trees), any other counter recovery schemes, e.g., extending
data bus or writing phase bits along with data by adding extra
burst, can work with our scheme. It is very important to note
that our paper goal is to speed up recovery time by reducing the
number of counters that needs to be recovered instead of how they
are recovered. Moreover, we aim at enabling recovery in schemes
where just recovering counters is insufficient to rebuild the tree.

2.5 Merkle Tree Reconstruction
Once all of the counters are corrected using Osiris, or other schemes,
theMerkle Tree can be regenerated and the integrity of the counters
can be verified by matching the root with the root of the tree stored
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securely inside the chip. However, rebuilding the Merkle Tree is
required to verify the first access; verifying each level would require
ensuring that all its children are up-to-date, and hence a recursive
operation of calculating MACs over all the tree will be needed after
recovery. Such a recursive process would lead to reconstructing
the Merkle Tree. Unfortunately, since NVMs are expected to have
huge capacities, such trees will be huge and would take hours to
be reconstructed.

2.6 Relationship Between Recoverability and
Tree Update Scheme

As discussed earlier, Merkle tree caches can be eagerly updated all
the way up to the root on each write access, or updated lazily. In
eager update scheme, the root always reflects the most recent state
of the tree and thus can be used for verification after recovering
the system. In contrast, in the lazy update scheme, the Merkle Tree
and counter caches have the most recent values, but the root might
be still stale. Considering persistent memory systems, lazy update
scheme can be used if and only if there is a way to completely
recover the cached content and verify their integrity (and freshness)
using means different than relying on the root; the root is stale and
no longer can be used as a way to verify the most-recent content.
However, for the eager update scheme, the root can be used to
verify the integrity of all contents, including the recovered tree
updates.

SGX-style trees are difficult to recover by only knowing the root
value; the updated intermediate nodes must be also recovered and
used for verification of upper and lower levels due to inter-level
dependency. Thus, for SGX-style trees, the most suitable scheme to
ensure recovery would be a secure and verifiable recovery of Merkle
tree cache, while using a lazy update scheme. In contrast, for Bonsai
Merkle tree, we can rely on either lazy or eager update schemes,
however, eager update scheme would incur much less run-time
overheads since it does not require frequent memory updates to
enable verification and restoration of the exact state of the Merkle
Tree cache and counter cache; just recalling which addresses could
have been potentially lost, and fix them, is sufficient.

In summary, if during a crash, the root does not reflect the most
recent value, we need a mechanism to securely recover and verify
the updates in Merkle Tree and counter caches, i.e., guaranteeing
that we know the values of all updates in the cache and verify their
freshness. However, if the root is strictly updated, i.e., using eager
update scheme, then we can recover the tree and counters, and
verify them using the root. The only exception is that for SGX-
style trees, the eager scheme is insufficient due to the reliance on
inter-level verification (See Figure 3).

2.7 Atomicity of Data and Security Metadata
Updates

In modern processor systems, there is a feature called ADR that
allows enough power to flush the contents of the Write Pending
Queue (WPQ) inside the processor to the NVM memory [13, 14]
once a crash occurs. However, the WPQ size is limited tens of en-
tries. Since anything gets inserted in WPQ is guaranteed to persist,
i.e., in the persistent domain, we have to ensure that the content of
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Figure 4: Atomic Persistence of Integrity-Protected NVMs.
WPQ ensures consistency or at least there is a way to bring the sys-
tem to a consistent state after power restoration. This leaves us with
a challenge on how to atomically insert updates to data, counter,
Merkle Tree nodes and Anubis updates in WPQ. To solve this prob-
lem, we rely on internal persistent registers to hold all the updates
(data, counter, Merkle Tree nodes and Anubis updates) before at-
tempting to insert them individually into the WPQ. Note that once
the data arrives the memory controller, it is placed in volatile write
buffer (outside the persistent domain) and the entry is considered
persisted only after its accompanying updates (counter and Merkle
Tree nodes) and its data are placed in the persistent registers. Later,
the contents of the persistent registers are individually inserted in
the WPQ. If any crash occurs while we are copying the content
from persistent registers to WPQ, then the memory controller will
try again to insert these updates to WPQ after recovery. Note that
if a crash occurs while we are still trying to make the updates on
persistent registers, then such write is already lost as it has never
reached the persistent domain. We can use DONE_BIT to find out
if the crash occurred while there is a valid content in persistent
registers or not; DONE_BIT is only set after all affected values have
been written to persistent registers and cleared after all persistent
registers have been copied to WPQ. Note that our scheme is similar
in spirit to REDO logging, however, using internal persistent reg-
isters. Note that using internal persistent registers have been also
assumed in state-of-the-art work [7]. Figure 4 depicts the design of
atomic updates of Merkle Tree in strict persistence scheme.

For the rest of the paper, we use a two-stage commit process that
leverages persistent registers to implement the discussed REDO log-
ging scheme. However, to avoid slow writes and limited endurance
of NVM registers, such persistent registers are implemented as
volatile registers that are backed by (copied once crash detected)
NVM registers, or simply dedicating few entries from the WPQ
as volatile registers and leverage ADR to copy them to internal
NVM registers. Note that multiple write entries in WPQ can be
flushed concurrently to exploit the bank-level parallelism in NVM
and avoid serializing writes to NVM.
3 MOTIVATION
As discussed earlier, parallelizable Merkle Trees, as in SGX-style
trees, are very challenging to recover. Unlike typical Merkle Tree,
the verification of each level counters also relies on the crypto-
graphic hash values stored in their children nodes; the hash value
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in their children levels are calculated over the counters in that child
node and a counter in the upper level, i.e., each upper-level counter
is used as a version number that will be verified by the children
hash value and later verified by the hash value of its neighboring
counters along with its parent counter. The process continues until
all corresponding parent counters are verified, however, if such
parent counters exist in the cache, it means that they are already
verified and thus it is sufficient to stop once the lowest level hit in
the cache is found. Unfortunately, if any of such intermediate nodes
gets lost during a crash, even if the root counters are saved inside
the processor, it is impossible to verify the integrity of leaves; they
strictly rely on verifying all their parent counters. Thus, due to this
inter-level dependence in this style of Merkle Tree, it needs special
handling to enable their recovery. Meanwhile, general Merkle Tree

Figure 5: Recovery Time for Different Memory Sizes (Using
Osiris).

implementations, such as Bonsai Merkle Tree, can be completely
reconstructed if we can recover encryption counters (the leaves) as
explained in prior work [7]; upper levels of Merkle Tree are simply
the hash values of lower-levels, and thus as long as the root hash
value matches after reconstruction, the counters are considered
verified. However, even for general Merkle Tree, the recovery time
is impractical for practical NVM capacities, e.g., 4TB or 8TB[10].
Figure 51 shows the recovery time for different NVM capacities as-
suming encryption counters can be recovered using state-of-the-art
counter recovery scheme [7].

Counter recovery schemes rely on reading data blocks to use
their accompanied ECC bits as a sanity-check for recovering the
used encryption counter [7]. Thus, the recovery time scales linearly
with the size of the memory (number of data blocks). For instance,
we can see that at 8TB NVM capacity, almost 8 hours are needed to
recover the system. With the expected huge capacities of NVMs,
any operation that is O(n), where n is the number of data blocks
(typically 64B) in memory, can take impractical time and should be
avoided, as also observed by Swift et al.[21].
1Due to the impracticality of simulating recovery time for large capacities, we calculate
recovery time by counting the number of hash values and nodes need to be fetched
and updated from memory and assume each would cost 100ns (fetch from memory,
hash calculation and/or decryption, as assumed in [7]).

Based on these two key observations, we follow the following
two main design principles:
• Enable O(n_cache × loдT reeAr ity (n)) recovery time, where
n_cache is the number of blocks in counter cache, instead of
O(n). For example, O(1000 × loд8(n)) instead of O(n). How-
ever, while also ensuring minimal run-time overhead. By do-
ing so, for 8TB memory, instead of iterating over ∼13 × 1010
blocks, we only need ∼1000 × 12 blocks, which is more than
107 speed up in recovery time.
• For SGX-Style Merkle Tree, it is insufficient to recover en-
cryption counters and having the most recent root value.
There must be a mechanism to reliably recover and verify
the integrity of all lost intermediate nodes.

Without such twomajor design principles, the recovery of integrity-
protected NVM memory systems would be either impractical (due
to significant recovery time) and/or completely infeasible due to
lost intermediate nodes in inter-level dependent trees. Thus, we
propose a new memory controller design, Anubis, that realizes both
design principles.

4 ANUBIS DESIGN
In this section, we describe the design options and details forAnubis.

4.1 Tracking Updated Security Metadata
One key observation we have is that it is sufficient to persistently
track the addresses of the blocks in the Merkle Tree and counter
caches to significantly reduce recovery time; only the blocks of
the tracked addresses have been possibly updated without being
persisted. Thus, by having the ability to identify the addresses of
the counter blocks that were in the cache at the time of the crash,
we only need to iterate through their corresponding counter blocks.
Similarly, by tracking the addresses of the Merkle Tree nodes in
the Merkle Tree cache, after fixing lost counters (using Osiris [7]),
reconstructing general Merkle Tree can be implemented by starting
from leaves, fixing those identified as lost, then going to the upper
level and fix those identified as lost, continuously until reaching the
top level. The order of fixing is important; repairing upper levels
relies on fixing lower levels first.

In its simplest form, shadow-tracking can be implemented by
reserving the cache size in NVM, e.g., a 128KB will be reserved
in NVM for shadowing the addresses in the 128KB counter cache.
During counter cache miss event, based on the location of the
victim block in the data array of the counter cache, the address of
the new block will be written to NVM on the offset corresponds to
the location in the cache, as explained in Figure 6. Similar approach
can be used for shadow-tracking Merkle Tree.

Note that the position of the block in the counter cache remains
fixed for its lifetime in the cache; LRU bits are typically stored and
changed in the tag array. Since the miss rate of counter cache is
typically very small, the additional writes will be minimal.

As mentioned earlier, updated nodes in both, Merkle Tree and
counter caches, must be tracked. For terminology, we refer the
counter shadow-tracker as Shadow Counter Table (SCT), whereas
the Merkle Tree shadow-tracker is called Shadow Merkle-tree Ta-
ble(SMT). In both cases, the storage overhead is minimal, e.g., for a
128KB counter cache size and 8TB memory, the overhead is only
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Figure 6: Shadow Table

128KB
8T B . Figure 9(a) shows how SCT and SMT memory blocks are

organized.
Anubis has two different schemes, one suitable for generalMerkle

Tree structure (e.g. Bonsai Merkle Tree) and another suitable for
SGX-style tree. We term the first scheme as AGIT (Anubis for Gen-
eral Integrity Tree: Section 4.2) and the second one as ASIT (Anubis
for SGX Integrity Tree: Section 4.3).

4.2 Anubis for General Integrity Tree (AGIT)
4.2.1 AGIT Read: Tracking Metadata Reads. As discussed earlier
in Section 2.6, when eager cache update scheme is used, general
Merkle Tree can be recovered by restoring the leaves and updating
the tree upwardly before finally verifying that the resulting root
matches that inside the processor. Thus, we can directly apply the
idea of shadow-tracking for both Merkle Tree and counter cache to
speed up the recovery process; only lost nodes and counters need
to be fixed. For both caches, the shadow regions are updated on
each cache miss, i.e., before reading a metadata block from memory,
and hence we call it AGIT Read scheme. Note that such shadow
regions are merely used for recovery acceleration; once recovered,
as usual, the root will be used to verify all counters and Merkle
Tree nodes as they are getting read into the processor chip. Thus,
any tampering with the content of shadow regions or unaffected
counters (were not in the cache) will lead to root mismatch when
the affected (not recovered correctly or tampered with) is read into
the processor chip.

Figure 8(a) illustrates the operation of AGIT Read. As shown
in the figure, once a memory request arrives at the memory con-
troller (step 1 ), the required encryption counter and Merkle Tree
nodes are retrieved from memory (as shown in Steps 2 and 3 ),
in case not present in the cache. Before inserting any of the counter
or Merkle Tree blocks in the shadow cache, Anubis prepares the
address blocks (used for tracking) of the counter and Merkle Tree
blocks and insert them into the WPQ(as shown in Step 4 ) before
inserting them in the cache (in Step 5 ). Note that since the track-
ing blocks (prepared in Step 4 ) are already in WPQ (persistent
write queue), they are considered persistent, however, they will be
eventually written to the SCT/SMT region in memory as soon as
WPQ is flushed or such entries get evicted from WPQ.

Although AGIT-Read scheme performs reasonably well with
applications that are not read intensive, read-intensive applications

Figure 7: Small Number of Cache-Blocks Get Modified in
Cache.

may trigger extra writes and update the SCT and SMT very fre-
quently.

4.2.2 AGIT Plus: Tracking Metadata Modifications. In AGIT-Read,
SCT and SMT are updated whenever some metadata are brought
into the cache disregarding the fact that somemetadata would never
be modified in the cache. In fact, a significant number of blocks
leave the cache without any modification. As illustrated in Figure 7,
most applications evict a large number of cache-blocks from the
counter cache that are clean. Hence, only tracking addresses of
modified blocks provide the same recoverability but with reduced
overhead. Moreover, most dirty cache-blocks are updated multiple
times in the counter cache and Merkle Tree cache. In fact, Merkle
Tree cache blocks reside in the cache and get modified more than
counter cache blocks. Only tracking once during a dirty cache
block’s lifetime is sufficient to successfully recover the system.

Based on these observations, AGIT Plus reduces extra updates to
the shadow tables by acting only whenever metadata is first modi-
fied in the Counter Cache or Merkle Tree Cache. This reduces the
overhead of AGIT read significantly without hurting the recover-
ability. AGIT-Plus (as shown in Figure 8-b) is similar to AGIT-Read
except that it triggers Anbuis only at the first update to a counter
or Merkle Tree blocks in the cache (as in steps 3 and 4 ), i.e.,
setting the dirty bit for the first time. Before completing the update
to caches, the generated shadow blocks must be inserted in WPQ.

4.2.3 AGIT Recovery Process. The recovery process of AGIT is
straightforward. Once the system is booted up upon recovery, the
system starts scanning the content of SCT to get the list of pos-
sibly lost updates in the cache. For each address, the data blocks
(correspond to the possibly lost counters) are read and used to re-
cover counter using Osiris as discussed earlier. Note that any other
counter recovery scheme would likely have to read the data block,
e.g., using phases or extending data bus. Later, once the affected
counters are fixed, AGIT scans through SMT to search for possibly
lost updates in the first level (immediate parents of counters) and
recalculate the nodes’ values based on their immediate children
(counters). Later, once the 1st level is fixed, AGIT scans SMT for
possibly lost updates to the second level and fix them by calculating
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Figure 8: Anubis Operation.

Algorithm 1: AGIT Recovery
1 Read SCT and SMT ;
2 for SCT i in SCT do
3 Read Counter Block at address stored in SCT i ;
4 forCounter inCounterBlock i do
5 Read DataBlock j ;
6 FixCounter using Osiris;
7 end
8 end
9 Classify SMT entries based on their level in tree ;

10 MaxLevel ← Total Merkle Tree Levels;
11 Af f ectedNodesm ← Total Affected Nodes at Level m;
12 m← 0;
13 form ≤ MaxLevel do
14 for Node in Af f ectedNodesm do
15 Read all child nodes of Node ;
16 Create hash of child nodes and replace Node ;
17 end
18 m← m +1 ;
19 end
20 if Stored root matches new root then
21 System recovered;
22 else
23 System is unrecoverable;
24 end

their values based on their immediate children (level 1). AGIT pro-
ceeds with the same process by going up in the tree level by level
and eventually reach the root of the tree. Once at the root level, the
resulting root from the calculated tree will be compared against
what is in the processor chip to find out if the recovery has been
successful. If the resulting root mismatches what is in the processor
chip, then the recovery process has failed, and the system raises
a warning about that. Note that the speed up in recovery mainly
stems from the fact that we only need to fix the lost counters and
Merkle Tree nodes than naively iterate through all the blocks as in
systems without Anubis.
4.3 Anubis for SGX Integrity Tree (ASIT)
Unlike general trees, SGX-style integrity tree advocates for fast
updates through limiting dependence between tree levels to only a
counter on the upper level. Thus, on each update, affected nodes on
different levels can be updated by calculating the MAC over their
counters and the updated counter at the upper level [17]. However,
this comes at the expense of extra complexity during reconstruction
after a crash. Each intermediate node depends on a counter on the
upper level, and counters of each level are verified using the MAC

value co-located with each node. Thus, by losing the MAC values on
different levels, it becomes infeasible to verify the integrity of the
tree. Meanwhile, reproducing the MAC values of the intermediate
tree is not safe until the counters of the level are verified.

In SGX, 8 of the 56-bit encryption counters are stored along with
a 56 bit hash in one single cache line. Each parent node(Merkle
Tree Node) also contains 8 counters (56 bits each), and a 56-bit
hash value. However, as mentioned earlier, it is very challenging
to recover the tree to its previous state after a crash and most of
the time quite impossible if some intermediate nodes in the tree
are missing. ASIT aims to provide a book-keeping mechanism that
tracks the tree during run-time and recovers after a crash very
quickly. Since encryption blocks in SGX have a similar structure to
intermediate levels, a single metadata cache is typically used. For
the shadow table, we also merge the SCT and SMT into one larger
Shadow Table (ST) with a size similar to metadata cache. Figure 9(b)
shows the organization of the Shadow Table for ASIT scheme.

Figure 9: Shadow Table Organization in AGIT and ASIT.
4.3.1 ASIT Metadata Tracking. ASIT’s main idea is inspired by
Anubis’s embalming capability. In particular, ASIT aims to have
an exact persistent copy of the content of metadata cache before
the crash. However, such a shadow copy must have its integrity
protected against any possible tampering. By doing so, it is sufficient
to just restore themetadata cache by copying back the shadow cache
after verifying its integrity.

In ASIT scheme (Figure 8-c), on each update to encryption coun-
ters (due to write requests) in the cache, the Shadow Table (ST) is
updated with the modified cachelines in the cache. As described
earlier (Section 2.6), an eager update scheme is inappropriate for
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SGX-style trees; having a root value that reflects the most recent
tree is insufficient to recover the tree. Meanwhile, strictly tracking
all changes to counters and Merkle Tree would incur significant
overheads with eager update scheme; each write would incur 12
writes to the shadow region. Therefore, we opt for using lazy update
scheme while strictly tracking the changes to the metadata cache;
in the lazy scheme only one block is typically updated on each
memory write, and thus it is more practical to track such updates
compared to eager update scheme. However, the cost is the need
to fully protect the integrity of the shadow-table through a small
general Merkle Tree (3-4 levels) with its root be persistent and never
leaves the processor chip. The updates to the tree protecting the
shadow table use eager cache update scheme, i.e., the root of the
shadow table tree reflects the most recent state of the shadow table.

Each Shadow Table block contains the following elements (Fig-
ure 9-b):
• Address: 64-bit address of the Merkle tree block/encryption
counter block modified in the combined metadata cache.
• MAC: 56-bit MAC value calculated over the updated counter
values (nonces in that node).
• Counter LSBs: This part consumes most of the space in each
Shadow Table entry and contains part of the LSBs of counters
in that Merkle Tree node. 8 LSBs from each counter of the MT
node is packed together into 49 bytes(49 bit each).

Whenever 49-bit LSBs of a counter overflows, the MT node is per-
sisted so that the LSB value stored inside SMT can successfully
recover the counter value. This ensures that the tree counters are
recoverable using the MSB of the memory version of the counters,
and the LSBs in the shadow block. Since 49-bit LSB overflows very
rarely, the overhead of persistence due to overflows is negligible.
Protecting Shadow Table: As mentioned earlier, since, the origi-
nal root can be stale and hence no longer can be used for verifying
integrity, a small non-parallelizable Merkle tree structure is main-
tained just to provide integrity protection of the Shadow Table(ST).
For 256kB Cache size, only a tree of four levels (8-ary) needs to be
maintained. However, there is no need for persisting this tree in
memory. It is sufficient to securely keep the root of such a tree, we
call it (SHADOW_TREE_ROOT ), as verification is done only during
recovery and is very fast. It should be noted that, in AGIT scheme,
such secondary tree to protect the shadow table is not necessary; if
attacker omits or tampers with entries in shadow caches, then the
resulting corruption in counters or Merkle Tree will be eventually
detected due to root mismatch. To avoid potential deadlock sce-
nario when evictions could occur due to insertion of blocks from the
shadow region tree, we dedicate a small percentage of the metadata
cache for the shadow region tree. Such part of the cache does not
need to be shadowed.

4.3.2 ASIT Recovery Process. The recovery process in the ASIT
scheme is different than that of the AGIT scheme in the following
two ways. First, Osiris (or any counter recovery scheme) is no
longer needed and hence no need to try different counter values
to finish recovery; the LSBs and MAC are replaced directly from
the SMT block. Second, instead of rebuilding the Merkle Tree, ASIT
only recovers the metadata cache to its pre-crash state.

The following steps are required for the recovery in the ASIT
scheme. First,Anubis reads the Shadow Table (ST) from the memory

Algorithm 2: ASIT Recovery
1 Read ST ;
2 Regenerate SHADOW _TREE_ROOT and verify;
3 Recover Tree Nodes
4 for all ST i in ST do
5 Stale_Node i ← Read node at address(ST i) and place in cache;
6 Recoverd_Node i ← Replace LSBs and MAC in Stale_Node i from ST i ;
7 end
8 Verify Integrity
9 for all Recovered_Node i inMetadata_Cache do

10 V er if y_Inteдr ity(Recovered_Node i)
11 if Inteдr ity_Not_V er if ied(Recovered_Nodei) then
12 The system is unrecoverable;
13 else
14 Do Nothing;
15 end
16 end

into the cache and regenerates SHADOW_TREE_ROOT, the root of
the general tree that is responsible for the integrity of the Shadow
Table. Next, this root is compared with the securely stored version
of it in the on-chip NVM register. Later, once the ST’s integrity has
been verified, recovery starts by iterating over each Shadow Table
block that has been loaded in the cache. For each Shadow Table
block, their non-persisted memory counterpart (stale node) is also
read and the LSBs and MAC values of that non-persisted node are
replaced with the LSBs and MAC stored in the Shadow Table, i.e.,
only MSBs of counters are used from the stale node. Later, for each
recovered node, we verify that MSBs were not tampered with by
verifying the MAC value with the result of applying hash over the
counters of the node and the counter in the upper node (from the
cache if it was recovered).

Once the recovery is done, every recovered tree node will have
the dirty bit set to 1. This way, the updates lazily propagate to the
memory due to natural eviction.
5 METHODOLOGY
To evaluate the performance overhead of Anubis, we use Gem5[15],
a cycle-level simulator. As illustrated in the Talbe 1, we simulate a
4-core X86 processor. We also use 16GB PCM-based Main Memory
with parameters modeled after [22], similar to related work[7, 8].
Analysis of different sizes of the counter cache and Merkle tree
cache is presented in Section 6.3. We use 11 memory-intensive
applications from SPEC 2006 benchmark suit [23] to stress our
model. For each application, we fast forward to a representative
region then simulate 500M instructions.

Table 1: Configuration of the Simulated System.

Processor
CPU 4 cores, X86-64, Out-of-Order, 1.00GHz
L1 Cache Private, 2 cycles, 23KB,2-Way
L2 Cache Private, 20 Cycles, 512KB, 8-Way
L3 Cache Shared, 32 Cycles, 8MB, 64-Way
Cacheline Size 64Byte

DDR-based PCMMain Memory
Capacity 16GB
PCM Latencies Read 60ns, Write 150ns

Encryption Parameters
Counter Cache 256KB, 8-Way, 64B Block
Merkle Tree Cache 256KB, 16-Way, 64B Block
SCT in AGIT 256KB
SMT in AGIT 256KB
ST in ASIT 512KB

In all our experiments, we model all integrity-protection and
encryption aspects including Merkle Tree cache, counter cache, and
hash calculation latency.

165



ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Zubair, et al.

6 EVALUATION
In this section, we evaluate our scheme based on the baseline system
and several state-of-the-art schemes. We evaluate the performance
of AGIT and ASIT scheme in separate results and compare their
sensitivity and recovery time.
6.1 AGIT Performance
To evaluate the AGIT scheme, we model and compare five schemes
as follows:
1 Write Back(Baseline): Simple counter mode encryption with
write back counter cache and general Bonsai style Merkle tree
cache.
2 Strict Persistence: This is the strict persistence scheme where
we persist every modification of the counters, and Merkle tree
nodes up to the root.
3 Osiris: Stop-loss counter update employed with the write-back
scheme. Similar to Osiris, we use stop-loss limit 4.
4 AGIT Read: Anubis for General Integrity Tree(AGIT) scheme
with write-back and stop-loss counter mode encryption. SCT and
SMT are updated at every counter cache and Merkle tree cache
miss.
5 AGIT Plus: This is our optimized AGIT schemewith write-back
and stop-loss counter mode encryption. SCT and SMT are updated
whenever the contents of the cache are modified for the first time.

Figure 10: AGIT Performance.

Figure 10 shows the performance of AGIT scheme compared to
other schemes. The Osiris-style stop-loss mechanism only adds a
few more writes on top of the write-back baseline. This is because
most of the counters easily get evicted before they reach the stop-
loss limit. The low-overhead in Osiris scheme comes at the cost of
impractical recovery time (as discussed in Section 3). The AGIT read
scheme adds slightly more overhead on top of the Osiris scheme.
However, its overhead is significantly high for applications that are
read intensive (e.g. MCF). This is because MCF is read-intensive;
few counters are actually written/updated in the cache before evic-
tion (as shown earlier in Figure 7). This phenomenon can be noticed
from the near identical performance of Write Back and Osiris for
MCF which means the application is read intensive and evicts the

counters long before they cross the stop-loss barrier. LBM is more
write intensive than MCF and generates an insignificant number
of read requests. Thus, AGIT read overhead is minimal in LBM
but demonstrates slightly higher overhead in Osiris since many
cachelines are written beyond the stop-loss limit. LIBQUANTUM
performs both reads and writes more than the rest of the appli-
cations(except MCF for reads) and Osiris overhead is highest for
LIBQUANTUM since it is the most write-intensive application we
have tested.

AGIT Plus scheme is superior in terms of achieving both, low
run-time overhead and practical recovery time. On average, AGIT
plus only adds 3.4% extra overhead over the write-back scheme.
The reason for the low overhead of AGIT-plus scheme is that it
updates the shadow table in a relaxed way, which only occurs when
a cacheline gets modified for the first time. Due to the varying
write behavior of the applications, AGIT plus outperforms AGIT
Read in case of read-intensive MCF. However, both schemes show
negligible overheads, even for write-intensive applications like
LIBQUANTUM, AGIT Read and AGIT Plus reduce the overhead
by 9.17x and 24.5x, respectively. On average, AGIT Read incurs
10.4% overhead over write-back Scheme and reduces the overhead
of the strict persistence by 5x. AGIT Plus performs even better,
incurring only 3.4% overhead while reducing 17.4x overhead of
strict persistence scheme.
6.2 ASIT Performance
For the ASIT scheme, we have modeled four schemes. Although we
model Write Back and Osiris using SGX style tree, the only schemes
that can recover such tree are Strict Persistence and ASIT:
1 Write Back: Simple writeback scheme with SGX style Merkle
Tree and counter mode encryptoin.
2 Strict Persistence: Strict persistence scheme; every modifi-
cation of the counters, and Merkle tree nodes up to the root are
written back to the memory immediately.
3 Osiris: Similar to the Osiris scheme modelled in AGIT evalua-
tion.
4 ASIT: This is the ASIT scheme working alongside write-back
counter mode encryption.

Figure 11: ASIT Performance.
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Figure 11 illustrates the performance analysis of ASIT scheme.
ASIT scheme, due to the nature of parallelizable trees, has to strictly
track the meta-data writes in the cache, however, the average over-
head is marginal when compared with the only scheme that ensures
recoverability (strict persistence), 7.9% vs. 63%. The lazy write-back
cache policy in ASIT scheme enables low overhead due to the re-
duced number of updates to cache, and hence reduced number of
shadowing memory writes. Compared to the only scheme that sup-
ports recoverability (strict-persistence), even for write-intensive
applications, LIBQUANTUM and LBM, the overheads are reduced
approximately by 9x and 10x, respectively. The average overhead
is only 7.9%, which makes ASIT the first practical scheme that en-
ables recovery of SGX-style trees. In addition to the impractical
performance overheads that the strict-persistence incurs, it causes
at least an additional ten writes per memory write operation, which
can significantly reduce the lifetime of NVMs. In contrast, ASIT
only incurs one extra write operation per memory write.

6.3 Sensitivity Study

Figure 12: Recovery Time.

6.3.1 Recovery Time: Unlike previous models (e.g., Osiris), the
recovery time in Anubis schemes is not a linear function of the
memory size, i.e., the recovery time does not increase linearly with
the increase of the memory size. In the AGIT and ASIT scheme,
the recovery time is only the function of the cache size(Counter
Cache, Merkle Tree Cache, or Combined Metadata-Cache) and the
number of levels in the tree. Figure 12 shows how recovery time
increases with the increase in cache size. Along the horizontal axis,
both counter cache and Merkle tree cache sizes are increased by
the same capacity. In comparison with the state-of-the-art Osiris,
the recovery time for 8TB memory is ≈28193 seconds(≈7.8 Hours)
as shown in Figure 5, while Anubis recovery time for extremely
large cache sizes (4MB) is only ≈0.48s in AGIT, i.e., 58735x faster
recovery time.

AGIT recovery time is almost more than double than the ASIT
recovery time. This is because, in AGIT scheme, each counter block
packs 64 counters(as in split counter scheme) each of which requires
one encrypted block to be fetched from memory during recovery.
However, SGX style counter cacheline (used in ASIT scheme) holds

only 8 counters and ASIT recovery does not rely on the ECC bits to
correct counters and hence requires only one read for the shadow
block and one read for the affected node from memory during re-
covery. Besides, during recovery, ASIT schememust bring one extra
node from memory (if not in the cache) to read the upper counter
during MAC generation. Generating hashes and MAC values in
ASIT scheme consumes negligible compared to the read latency.

Figure 13: Sensitivity of Performance to Cache Size.

6.3.2 Performance sensitivity to Cache Size: The overall perfor-
mance of each scheme improves with the cache size increase. As
shown in Figure 13, the sensitivity of each of the scheme decreases
after a certain level of cache size. Beyond 1MB, there is no signifi-
cant improvement in performance with further cache size increase.
It should also be noted that the least sensitive scheme with cache
increase is ASIT. Although the write-back performance of ASIT
scheme improves with an increase in cache size, the normalized
performance improvement of ASIT scheme compared to the base-
line(Write Back) almost remains the same. This is because ASIT
extra writes are dependent on the application behavior(number
of data writes) rather than the locality in the cache. In other two
schemes(AGIT read and AGIT plus), the performance depends more
on the availability of the metadata inside the cache(due to less
counter reads in AGIT read with higher cache size and less eviction
in AGIT plus with higher cache size).

7 RELATEDWORK
In this section, we discuss the prior works related to Non-Volatile
Memory recovery time and crash consistency. The most related
work to our paper is selective atomicity [8] and Osiris [7]. In selec-
tive atomicity, the authors propose an API for the programmers to
selectively persist counters and ensure atomicity through a write
queue and Ready-Bit. In order to reduce the overhead of ensur-
ing atomicity of all counters, the paper proposes selective counter
atomicity that makes sure of atomicity of only a few counters and
does not guarantee atomicity for others. Osiris shows that selective
counter atomicity, since not protecting the majority of counters,
could result in replay attacks as stale values of counters may occur

167



ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA Zubair, et al.

for these counters after a crash. Osiris discusses the recoverability
of all counters using Error Correcting mechanism (ECC bits) of
NVDIMM. Each data cacheline, along with its ECC is encrypted
using a counter before stored in the NVM. In addition to that, Osiris
introduces a stop-loss mechanism for the counter update. Com-
bining these two methods, Osiris can recover the counter across
crashes since counters are now recoverable from the data itself. A
concurrent work toAnubis is Triad-NVM[24]. Triad-NVM addresses
recovery of general Merkle Trees on systems with both persistent
and non-persistent regions. Moreover, Triad-NVM aims at provid-
ing trade-offs between resilience, recovery time and performance.
The major difference between Anubis and Triad-NVM is that Anubis
aims at ultra-low recovery time and additionally enables recovery
of SGX-style Merkle Tree, whereas Triad-NVM is limited to general
Merkle Tree and providing design trade-offs between resilience,
recovery time, and performance.

There are several state-of-the-art works done in NVM secu-
rity and persistence [18–20, 25–29] without considering the crash-
consistency and recovery that discusses to optimize the run-time
overhead of implementing security to Non-Volatile-Memory. Most
works employ counter-mode encryption for encrypting data and
Merkle Tree for ensuring integrity. However, to the best of our
knowledge, none of the works discuss the recovery and crash-
consistency of integrity protected systems. SecPM [28] proposes a
write-through mechanism for counter cache that tries to combine
multiple updates of counters to a single write to memory, however,
does not ensure recovery for SGX and incurs significant recovery
time as in Osiris. To the best of our knowledge, we are the first to
discuss the reduction of recovery time of secure non-volatile mem-
ory and recovery mechanism that seamlessly works with different
integrity protection schemes.

8 CONCLUSION
Anubis bridges the gap between recoverability and high perfor-
mance in secure Non-Volatile Memories. Our solution can be seam-
lessly integrated into various secure and integrity protected systems
including Intel SGX. Anubis can achieve significant improvement
in recovery time and incur only 3.4% overhead when implemented
in general Merkle tree integrity-protected system, and only 7.9%
in complicated SGX-like integrity-protected system. In addition to
that, Anubis removes the memory size barrier in recovery time and
instead makes the recovery time a function of counter cache and
Merkle Tree cache size. In summary, with minimal performance
overheads, we can achieve recoverability of complicated trees and
a recovery time that is less than a second.
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